



Seat No. \_\_\_\_\_

**HP-003-3032003**

**B. C. A. (Sem. II) (CBCS) (W.E.F.-2022) Examination**  
**April – 2023**

**Computer Organization & Architecture : CS-09**  
*(New Course)*

**Faculty Code : 003**  
**Subject Code : 3032003**

Time :  $2\frac{1}{2}$  Hours / Total Marks : **70**

|          |                                                       |          |
|----------|-------------------------------------------------------|----------|
| <b>1</b> | <b>(a) Attempt the following :</b>                    | <b>4</b> |
|          | (1) Which is the inverter gate of LAND gate ?         |          |
|          | (2) Is flip-flop is a sequentially designed circuit ? |          |
|          | (3) POS stands for.                                   |          |
|          | (4) Write two commutative postulates.                 |          |
|          | <br>                                                  |          |
|          | <b>(b) Attempt any one :</b>                          | <b>2</b> |
|          | (1) What is Boolean algebra ?                         |          |
|          | (2) What is combinational circuit ?                   |          |
|          | <br>                                                  |          |
|          | <b>(c) Attempt any one :</b>                          | <b>3</b> |
|          | (1) Explain and prove De-Morgan's theorems.           |          |
|          | (2) Simplify following Boolean function using K-map.  |          |
|          | $F(w,x,y,z) = \sum(0,1,2,3,7,8,10) + d(5,6,11,15)$    |          |
|          | <br>                                                  |          |
|          | <b>(d) Attempt any one :</b>                          | <b>5</b> |
|          | (1) Write a detailed note on types of logic gates.    |          |
|          | (2) Draw circuit and explain D and JK flip-flop.      |          |

**2** (a) Attempt the following : 4

- (1) What is Bi-directional shift register ?
- (2) De-Multiplexer is also known as \_\_\_\_\_.
- (3) If we construct 8 bits Mux, then how many selection lines are required?
- (4) VLSI stands for \_\_\_\_\_.

(b) Attempt any one : 2

- (1) Explain Buffer register.
- (2) Explain shift register.

(c) Attempt any one: 3

- (1) Write a note on 3x8 decoder.
- (2) Write a note on encoder.

(d) Attempt any one : 5

- (1) Explain multiplexer in detail.
- (2) Draw and explain register with parallel load.

**3** (a) Attempt the following : 4

- (1) What is parity bit ?
- (2) Base of an octal number is \_\_\_\_\_
- (3) If number is negative, then sign bit will be \_\_\_\_\_.
- (4) Write 2's complement of 010011000.

(b) Attempt any one : 2

- (1) Perform binary multiplication of  $1011 \times 101$ .
- (2) Perform binary division of  $110111 \div 101$ .

(c) Attempt any one : 3

- (1) Multiply 1011.01 by 101.01 in binary.
- (2) Explain fixed point representation with example.

(d) Attempt any one : 5

- (1) Explain floating point representation with example.
- (2) Explain error detection code with example.

4 (a) Attempt following : 4

- (1) CPU stands for \_\_\_\_\_.
- (2) (A+B) \* C write prefix notation of given expression.
- (3) Control word is of \_\_\_\_\_ number of bits.
- (4) Register overflow is an example of \_\_\_\_\_ type of interrupt.

(b) Attempt any one : 2

- (1) Explain major components of CPU.
- (2) Explain Register Stack.

(c) Attempt any one : 3

- (1) Explain interrupt and its various types.
- (2) Draw and explain block diagram of A.L.U.

(d) Attempt any one : 5

- (1) Write a note on general register organization.
- (2) Write a detailed note on RPN with stack organization.

5 (a) Attempt following : 4

- (1) IOP stands for \_\_\_\_\_.
- (2) DMA stands for \_\_\_\_\_.
- (3) List out memory buses.
- (4) Full form of BG signal in DMA.

(b) Attempt any one : 2

- (1) What is high impedance model ?
- (2) Write concept of input output interface.

(c) Attempt any one : 3

- (1) Explain memory buses.
- (2) Explain how DMA works in brief.

(d) Attempt any one : 5

- (1) Write a detailed note on DMA controller.
- (2) Write a detailed note on IOP.